ML resources

1. Machine Learning Algorithms

General resources: (revise these after completing the below resources)

List of algorithms:

  1. Linear Regression
    1. Videos
    2. Article
    3. Questions
  2. Multiple Linear Regression
    1. Videos
    2. Questions
  3. Lasso and Ridge
    1. Article)
    2. Questions
  4. Logistic Regression
    1. Videos
    2. Article
    3. Questions
    4. additional Videos
  5. KNN
    1. Video
    2. [Article](https://blog.usejournal.com/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7#:~:text=KNN algorithm is one of,the most used learning algorithms.&text=KNN is a non-parametric,of a new sample point.))
    3. Questions
  6. SVM
    1. Video
    2. Videos
    3. Article
    4. Questions
    5. Questions - 2
  7. Decision Tree
    1. Videos
    2. Article
    3. Article-2
    4. Questions
  8. PCA and Dimensionality reduction
    1. Video
    2. Article
    3. Questions
    4. Questions - 2
  9. Ensemble Learning
    1. Article
    2. Videos
    3. Questions
  10. Random Forest
    1. Video
    2. Article
    3. [Article-2](https://builtin.com/data-science/random-forest-algorithm#:~:text=Put simply%3A random forest builds,more accurate and stable prediction.&text=Random forest has nearly the,tree or a bagging classifier.&text=Random forest adds additional randomness,model%2C while growing the trees.))
    4. Question
  11. Adaboost - Article
  12. GBM - Article
  13. XGBM - Article
  14. LightGBM - Article
  15. CatBoost - Article
  16. K-Means Clustering
    1. Video
    2. Questions
    3. Questions-2
  17. EM algorithm - Video

2. Machine Learning concepts

3. Statistics and Probability

  • Article
  • All the concepts mentioned in the video → **link →** enough for interview preperation
  • Search the concept on Reddit - eli5 → example: Search “z-score eli5
  • Questions
  • Questions - 2

5. SQL

(very important part of the whole interview process)

6. Deep learning basics

7. Product and Experiment design

  1. A/B Testing
    1. Article
    2. Questions

8. Python & Data structures and algorithms

Additional Resources:- (read these after completing the below resources)